На главную

Границы применимости закона всемирного тяготения.

Закон всемирного тяготения позволил Ньютону объяснить движение планет, морские приливы и отливы. Впоследствии астрономы с его помощью «на кончике пера» открыли самые планеты нашей Солнечной системы - Нептун и Плутон. На основании этого закона прогнозируют солнечные и лунные затмения, рассчитывают движение космических кораблей. Такое значение гравитационной постоянной объясняет, почему гравитационные силы между телами небольшой массы ничтожно малы, и мы их часто не замечаем. Ведь даже две пули, каждая массой с тонну, на расстоянии 1 м притягиваются друг к другу с силой лишь в 6,67 стотысячных долей ньютона. А для тел, имеющих большую массу (звезд и планет), эти силы достигают больших значений.

Закон всемирного тяготения

Сэр Исаак Ньютон на склоне своих лет рассказал о том, как он открыл закон всемирного тяготения. Когда молодой Исаак гулял в саду среди яблонь в поместье своих родителей, он увидел луну в дневном небе. И рядом с ним упало яблоко на землю, сорвавшись с ветки. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. И знал, что Луна не просто находится на небе, а вращается вокруг Земли по орбите, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Вот тут и пришла ему идея о том, что, возможно, одна и та же сила заставляет яблоко падать на землю, и Луну оставаться на околоземной орбите. До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Такое представление прочно закрепилось в сознании людей того времени. Прозрение Ньютона заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование. Так и был открыт закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение».

Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними. Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Гюйгенс, Роберваль, Декарт, Борелли, Кеплер, Гассенди, Эпикур и другие. По предположению Кеплера, тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной зависимостью от расстояния, но до Ньютона никто так и не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687 г.) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что: • наблюдаемые движения планет свидетельствуют о наличии центральной силы; • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам. В отличие от гипотез предшественников, теория Ньютона имела ряд существенных отличий. Сэр Исаак опубликовал не только предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель: • закон тяготения; • закон движения (второй закон Ньютона); • система методов для математического исследования (математический анализ). В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики.

Но Исаак Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Только в 1915 году эти усилия увенчались успехом созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены.